公文大好き!院卒サラリーマンが公文の良さ語ります

公文式

この投稿が公文についての初めてではありません。
私は小2~小6まで公文で算数・数学を学年を超えて学び、そのおかげで高校に入るまでは数学に困ることなく、理系の大学~大学院まで行くことが出来ました。
学生時代は家庭教師や塾講師をし、また就職して子供が生まれてから子供のために勉強をみるにつけ、改めて公文の算数・数学の良さに実感しています。
ただ、実生活では公文式の良さについて語る場なんてそうありません。
そこで、ここで書き留めておきたいと思います。

計算に特化したカリキュラム

なんといっても公文の良さは算数・数学です。
小学校では時計やグラフ、図形も習うのですが、公文はそれらには目もくれず、計算一転突破。
計算以外できなくて大丈夫なの?と思うアナタ。
いやいや、計算は小1からの積み重ね、ここで詰まるようだと一生困ります。
図形もグラフも時計も、計算ができないと話になりません。

それを見越してか、公文は最初から最後まで計算で突っ走ります。
小1のたし算・ひき算、小2のひっ算・九九、小3の掛け算のひっ算・割り算、小4の割り算のひっ算・約分、小5の分数の四則演算、小6の小数。
中1の文字式・一次方程式、中2の連立方程式、中3の因数分解・2次方程式。
中3相当から、関数が出てくるためグラフが出てきますがそれも計算重視です。

ここまで計算に特化したカリキュラムはみていて清々しいですね。

工夫された教材と徹底したやり直し

算数・数学の教材はA, B, C…のようにアルファベットで大体の学年が区切られており、Aが小1、Bが小2…Fが小6、Gが中1、Hが中2、Iが中3相当となっています。
そして、それぞれのアルファベットの中に200枚の教材が準備されており、生徒は教室で5枚~10枚解いて、宿題にも10~15枚程度貰ってくる形です。

この200枚の教材が素晴らしい。
少しずつ、丁寧に段階を踏んで難しくなるような問題が綺麗に配置されています。
たし算なら、まずは+1だけの問題をひたすら解いて、慣れたころに+2だけの問題。
それにも慣れたら次に+3だけの問題を解く。
ここまで来たら、+1~+3までがランダムにある問題を解いて復習しながら、完璧にできれば次は+4。
約分なら、まずは2や3で約分できる問題をメインに解き、慣れてきた頃に少しずつ大きな数で約分するような問題に移行する。
ここまで練られた問題を解いていけば、知らず知らずのうちに実力はつくものです。

そして、ここまで練られた問題だから可能なのがつまづいたときの復習。
少し難しいかな?時間がかかるかな?と思ったら、ちょっと前のプリントを宿題に挟んで実力を確かめながら、また難しい問題に挑戦。
またうまくいかなくても、慌てずに少し立ち返りながら着実に進んでいきます。
自主性を大事にしながら、実力に合わせた問題を解かせ、生徒の自信をつける。
このやり方は非常に素晴らしいです。感謝しています。

実体験を踏まえて

先述の通り、私は小2でたまたま家の近所の公文に通い、小6までの5年間通いました。
最初のテストでひき算を失敗し、小1相当のA教材から始めたのを覚えています。
しかし、そこから上手くペースに乗せられてあれよあれよと進み、小5で中3相当の因数分解を、小6で高1相当の解と係数の関係を解いていた記憶があります。
小学生なのに、公文に通っていた他の中3の人より因数分解が早くでき、自慢していたように思います。

そのおかげで、中学では全く数学に困ることはなく、他の教科に集中できました。
先生が自習時間1時間かけて解いてねといって持ってきたプリントを数分で仕上げ、他の子に教えて回っていたくらいです。
こういった成功体験がもとで、高校受験も上手くいき、その後結局大学院まで進むことが出来ました。

子供も公文に通わせており、一人は小4で中1相当、もう一人は小2で小4相当まで進んでいます。
もっと進んでいる子は多いのですが、ウチは中学受験させる気もなく、普通の公立中高まで進んでほしいと考えています。
こういった普通の家庭には、ギラギラした中学受験専門塾ではなくもう少し自分のぺースでできる公文がいいのではないでしょうか。

タイトルとURLをコピーしました